Equivalent Parental Contribution to Early Plant Zygotic Development

نویسندگان

  • Stephanie Meyer
  • Stefan Scholten
چکیده

Hybrid vigor or heterosis results from the combination of genetically distant genomes at fertilization, and as well as being of major commercial importance, it is held to contribute significantly to fitness [1]. Activation of the paternal genome marks the transition from maternal to zygotic control of development, but a reported delay of paternal-genome activation in flowering plants [2-4] and animals [5, 6] excludes heterosis from impacting on very early development. We have analyzed the allele-specific expression of 25 genes after fertilization of the egg in maize and show immediate equivalent parental genomic contribution to the zygote. Every gene expressed before the first cell division of the zygotes showed paternal transcripts. Sequence comparisons indicate that these genes are involved in a range of processes and are distributed throughout the genome. Our findings confirm that some plant species have evolved a strategy to activate the paternal genome immediately after fertilization, in contrast to the situation in other plants and in animals. Such an extensive activation of the paternal genome very early in development is consonant with observations of high levels of heterosis in early hybrid maize embryos [7, 8], indicating a significant impact of this sexual strategy on fitness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parental contributions to the transcriptome of early plant embryos.

In plants and animals, embryo development becomes ultimately controlled by zygotic genes, but the timing of zygotic genome activation (ZGA) varies greatly between organisms. We recently showed that the transcriptome of young Arabidopsis embryos is dominated by maternal transcripts with a progressive ZGA under the maternal control of epigenetic pathways. In contrast, another study reported that ...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Timing of the maternal-to-zygotic transition during early seed development in maize.

In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. Recent data in plants also suggest maternal control over early seed development, but the actual timing of zygotic genome activation is unclear. Here, we analyzed the timing of the maternal-to-zygotic transition during early Zea mays seed development. We show that for 16 genes e...

متن کامل

Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to severa...

متن کامل

Parental contribution to plant embryos.

Unequal contribution of the parental genomes to the developing embryo can occur by a variety of mechanisms. In Dropsophila, for example, maternally produced transcripts determine the embryonic formation of body axes (St. Johnston and Nüsslein-Volhardt, 1992). Inequality in parental contribution of a different nature is achieved by genetic imprinting, in which either the maternal or paternal all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007